使用 Milvus 和 Cohere 进行问答
本页面说明如何使用 Milvus 作为向量数据库和 Cohere 作为嵌入系统,基于 SQuAD 数据集创建问答系统。
开始之前
本页面的代码片段需要安装 pymilvus、cohere、pandas、numpy 和 tqdm。在这些包中,pymilvus 是 Milvus 的客户端。如果您的系统中没有安装这些包,请运行以下命令来安装:
pip install pymilvus cohere pandas numpy tqdm
然后您需要加载本指南中要使用的模块。
import cohere
import pandas
import numpy as np
from tqdm import tqdm
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
参数
在这里可以找到以下代码片段中使用的参数。其中一些需要更改以适应您的环境。每个参数旁边都有其说明。
FILE = 'https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json' # The SQuAD dataset url
COLLECTION_NAME = 'question_answering_db' # Collection name
DIMENSION = 1024 # Embeddings size, cohere embeddings default to 4096 with the large model
COUNT = 5000 # How many questions to embed and insert into Milvus
BATCH_SIZE = 96 # How large of batches to use for embedding and insertion
MILVUS_HOST = 'localhost' # Milvus server URI
MILVUS_PORT = '19530'
COHERE_API_KEY = 'replace-this-with-the-cohere-api-key' # API key obtained from Cohere
要了解更多关于本页面使用的模型和数据集的信息,请参考 co:here 和 SQuAD。
准备数据集
在本示例中,我们将使用 Stanford Question Answering Dataset (SQuAD) 作为问答的真实数据来源。该数据集以 JSON 文件的形式提供,我们将使用 pandas 来加载它。
# Download the dataset
dataset = pandas.read_json(FILE)
# Clean up the dataset by grabbing all the question answer pairs
simplified_records = []
for x in dataset['data']:
for y in x['paragraphs']:
for z in y['qas']:
if len(z['answers']) != 0:
simplified_records.append({'question': z['question'], 'answer': z['answers'][0]['text']})
# Grab the amount of records based on COUNT
simplified_records = pandas.DataFrame.from_records(simplified_records)
simplified_records = simplified_records.sample(n=min(COUNT, len(simplified_records)), random_state = 42)
# Check the length of the cleaned dataset matches count
print(len(simplified_records))
输出应该是数据集中的记录数量
5000
创建 Collection
本节处理 Milvus 和为此用例设置数据库。在 Milvus 中,我们需要设置一个 Collection 并为其建立索引。
# Connect to Milvus Database
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)
# Remove collection if it already exists
if utility.has_collection(COLLECTION_NAME):
utility.drop_collection(COLLECTION_NAME)
# Create collection which includes the id, title, and embedding.
fields = [
FieldSchema(name='id', dtype=DataType.INT64, is_primary=True, auto_id=True),
FieldSchema(name='original_question', dtype=DataType.VARCHAR, max_length=1000),
FieldSchema(name='answer', dtype=DataType.VARCHAR, max_length=1000),
FieldSchema(name='original_question_embedding', dtype=DataType.FLOAT_VECTOR, dim=DIMENSION)
]
schema = CollectionSchema(fields=fields)
collection = Collection(name=COLLECTION_NAME, schema=schema)
# Create an IVF_FLAT index for collection.
index_params = {
'metric_type':'IP',
'index_type':"IVF_FLAT",
'params':{"nlist": 1024}
}
collection.create_index(field_name="original_question_embedding", index_params=index_params)
collection.load()
插入数据
一旦我们设置好 Collection,就需要开始插入数据。这分为三个步骤:
- 读取数据,
- 嵌入原始问题,以及
- 将数据插入到我们刚刚在 Milvus 上创建的 Collection 中。
在本示例中,数据包括原始问题、原始问题的嵌入和原始问题的答案。
# Set up a co:here client.
cohere_client = cohere.Client(COHERE_API_KEY)
# Extract embeddings from questions using Cohere
def embed(texts, input_type):
res = cohere_client.embed(texts, model='embed-multilingual-v3.0', input_type=input_type)
return res.embeddings
# Insert each question, answer, and qustion embedding
total = pandas.DataFrame()
for batch in tqdm(np.array_split(simplified_records, (COUNT/BATCH_SIZE) + 1)):
questions = batch['question'].tolist()
embeddings = embed(questions, "search_document")
data = [
{
'original_question': x,
'answer': batch['answer'].tolist()[i],
'original_question_embedding': embeddings[i]
} for i, x in enumerate(questions)
]
collection.insert(data=data)
time.sleep(10)
提问
一旦所有数据都插入到 Milvus Collection 中,我们就可以通过获取问题短语、使用 Cohere 进行嵌入并在 Collection 中搜索来向系统提问。
在数据插入后立即执行的搜索可能会稍慢一些,因为对未索引数据的搜索是以暴力方式进行的。一旦新数据自动建立索引,搜索速度就会加快。
# Search the cluster for an answer to a question text
def search(text, top_k = 5):
# AUTOINDEX does not require any search params
search_params = {}
results = collection.search(
data = embed([text], "search_query"), # Embeded the question
anns_field='original_question_embedding',
param=search_params,
limit = top_k, # Limit to top_k results per search
output_fields=['original_question', 'answer'] # Include the original question and answer in the result
)
distances = results[0].distances
entities = [ x.entity.to_dict()['entity'] for x in results[0] ]
ret = [ {
"answer": x[1]["answer"],
"distance": x[0],
"original_question": x[1]['original_question']
} for x in zip(distances, entities)]
return ret
# Ask these questions
search_questions = ['What kills bacteria?', 'What\'s the biggest dog?']
# Print out the results in order of [answer, similarity score, original question]
ret = [ { "question": x, "candidates": search(x) } for x in search_questions ]
输出结果应该类似于以下内容:
# Output
#
# [
# {
# "question": "What kills bacteria?",
# "candidates": [
# {
# "answer": "farming",
# "distance": 0.6261022090911865,
# "original_question": "What makes bacteria resistant to antibiotic treatment?"
# },
# {
# "answer": "Phage therapy",
# "distance": 0.6093736886978149,
# "original_question": "What has been talked about to treat resistant bacteria?"
# },
# {
# "answer": "oral contraceptives",
# "distance": 0.5902313590049744,
# "original_question": "In therapy, what does the antibacterial interact with?"
# },
# {
# "answer": "slowing down the multiplication of bacteria or killing the bacteria",
# "distance": 0.5874154567718506,
# "original_question": "How do antibiotics work?"
# },
# {
# "answer": "in intensive farming to promote animal growth",
# "distance": 0.5667208433151245,
# "original_question": "Besides in treating human disease where else are antibiotics used?"
# }
# ]
# },
# {
# "question": "What's the biggest dog?",
# "candidates": [
# {
# "answer": "English Mastiff",
# "distance": 0.7875324487686157,
# "original_question": "What breed was the largest dog known to have lived?"
# },
# {
# "answer": "forest elephants",
# "distance": 0.5886962413787842,
# "original_question": "What large animals reside in the national park?"
# },
# {
# "answer": "Rico",
# "distance": 0.5634892582893372,
# "original_question": "What is the name of the dog that could ID over 200 things?"
# },
# {
# "answer": "Iditarod Trail Sled Dog Race",
# "distance": 0.546872615814209,
# "original_question": "Which dog-sled race in Alaska is the most famous?"
# },
# {
# "answer": "part of the family",
# "distance": 0.5387814044952393,
# "original_question": "Most people today describe their dogs as what?"
# }
# ]
# }
# ]